Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Diabetes Obes Metab ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38562018

AIMS: To establish which components of energy balance mediate the clinically significant weight loss demonstrated with use of cotadutide, a glucagon-like peptide-1 (GLP-1)/glucagon receptor dual agonist, in early-phase studies. MATERIALS AND METHODS: We conducted a phase 2a, single-centre, randomized, placebo-controlled trial in overweight and obese adults with type 2 diabetes. Following a 16-day single-blind placebo run-in, participants were randomized 2:1 to double-blind 42-day subcutaneous treatment with cotadutide (100-300 µg daily) or placebo. The primary outcome was percentage weight change. Secondary outcomes included change in energy intake (EI) and energy expenditure (EE). RESULTS: A total of 12 participants (63%) in the cotadutide group and seven (78%) in the placebo group completed the study. The mean (90% confidence interval [CI]) weight change was -4.0% (-4.9%, -3.1%) and -1.4% (-2.7%, -0.1%) for the cotadutide and placebo groups, respectively (p = 0.011). EI was lower with cotadutide versus placebo (-41.3% [-66.7, -15.9]; p = 0.011). Difference in EE (per kJ/kg lean body mass) for cotadutide versus placebo was 1.0% (90% CI -8.4, 10.4; p = 0.784), assessed by doubly labelled water, and -6.5% (90% CI -9.3, -3.7; p < 0.001), assessed by indirect calorimetry. CONCLUSION: Weight loss with cotadutide is primarily driven by reduced EI, with relatively small compensatory changes in EE.

2.
Physiol Rev ; 104(3): 1021-1060, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38300523

Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."


Glucagon , Glucose , Liver , Humans , Glucagon/metabolism , Liver/metabolism , Animals , Glucose/metabolism , Lipid Metabolism/physiology , Homeostasis/physiology
3.
Mol Metab ; 55: 101392, 2022 01.
Article En | MEDLINE | ID: mdl-34781035

OBJECTIVE: Obesity-linked type 2 diabetes (T2D) is a worldwide health concern and many novel approaches are being considered for its treatment and subsequent prevention of serious comorbidities. Co-administration of glucagon like peptide 1 (GLP-1) and peptide YY3-36 (PYY3-36) renders a synergistic decrease in energy intake in obese men. However, mechanistic details of the synergy between these peptide agonists and their effects on metabolic homeostasis remain relatively scarce. METHODS: In this study, we utilized long-acting analogues of GLP-1 and PYY3-36 (via Fc-peptide conjugation) to better characterize the synergistic pharmacological benefits of their co-administration on body weight and glycaemic regulation in obese and diabetic mouse models. Hyperinsulinemic-euglycemic clamps were used to measure weight-independent effects of Fc-PYY3-36 + Fc-GLP-1 on insulin action. Fluorescent light sheet microscopy analysis of whole brain was performed to assess activation of brain regions. RESULTS: Co-administration of long-acting Fc-IgG/peptide conjugates of Fc-GLP-1 and Fc-PYY3-36 (specific for PYY receptor-2 (Y2R)) resulted in profound weight loss, restored glucose homeostasis, and recovered endogenous ß-cell function in two mouse models of obese T2D. Hyperinsulinemic-euglycemic clamps in C57BLKS/J db/db and diet-induced obese Y2R-deficient (Y2RKO) mice indicated Y2R is required for a weight-independent improvement in peripheral insulin sensitivity and enhanced hepatic glycogenesis. Brain cFos staining demonstrated distinct temporal activation of regions of the hypothalamus and hindbrain following Fc-PYY3-36 + Fc-GLP-1R agonist administration. CONCLUSIONS: These results reveal a therapeutic approach for obesity/T2D that improved insulin sensitivity and restored endogenous ß-cell function. These data also highlight the potential association between the gut-brain axis in control of metabolic homeostasis.


Glucagon-Like Peptide 1/metabolism , Obesity/metabolism , Peptide YY/metabolism , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet , Eating/drug effects , Energy Intake/drug effects , Energy Metabolism/drug effects , Gastric Bypass , Glucagon-Like Peptide-1 Receptor/metabolism , Hypothalamus , Insulin Resistance/physiology , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/physiopathology , Peptide YY/physiology , Weight Loss
4.
Sci Adv ; 7(43): eabi9654, 2021 Oct 22.
Article En | MEDLINE | ID: mdl-34669477

Circadian rhythms are generated by an autoregulatory feedback loop of transcriptional activators and repressors. Circadian rhythm disruption contributes to type 2 diabetes (T2D) pathogenesis. We elucidated whether altered circadian rhythmicity of clock genes is associated with metabolic dysfunction in T2D. Transcriptional cycling of core-clock genes BMAL1, CLOCK, and PER3 was altered in skeletal muscle from individuals with T2D, and this was coupled with reduced number and amplitude of cycling genes and disturbed circadian oxygen consumption. Inner mitochondria­associated genes were enriched for rhythmic peaks in normal glucose tolerance, but not T2D, and positively correlated with insulin sensitivity. Chromatin immunoprecipitation sequencing identified CLOCK and BMAL1 binding to inner-mitochondrial genes associated with insulin sensitivity, implicating regulation by the core clock. Inner-mitochondria disruption altered core-clock gene expression and free-radical production, phenomena that were restored by resveratrol treatment. We identify bidirectional communication between mitochondrial function and rhythmic gene expression, processes that are disturbed in diabetes.

5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article En | MEDLINE | ID: mdl-34493662

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


AMP-Activated Protein Kinases/metabolism , Energy Metabolism , Mitochondria/pathology , Mitophagy , Physical Conditioning, Animal , AMP-Activated Protein Kinases/genetics , Animals , Humans , Male , Mice , Mitochondria/metabolism
6.
PLoS Genet ; 17(1): e1009325, 2021 01.
Article En | MEDLINE | ID: mdl-33513138

In response to physical exercise and diet, skeletal muscle adapts to energetic demands through large transcriptional changes. This remodelling is associated with changes in skeletal muscle DNA methylation which may participate in the metabolic adaptation to extracellular stimuli. Yet, the mechanisms by which muscle-borne DNA methylation machinery responds to diet and exercise and impacts muscle function are unknown. Here, we investigated the function of de novo DNA methylation in fully differentiated skeletal muscle. We generated muscle-specific DNA methyltransferase 3A (DNMT3A) knockout mice (mD3AKO) and investigated the impact of DNMT3A ablation on skeletal muscle DNA methylation, exercise capacity and energy metabolism. Loss of DNMT3A reduced DNA methylation in skeletal muscle over multiple genomic contexts and altered the transcription of genes known to be influenced by DNA methylation, but did not affect exercise capacity and whole-body energy metabolism compared to wild type mice. Loss of DNMT3A did not alter skeletal muscle mitochondrial function or the transcriptional response to exercise however did influence the expression of genes involved in muscle development. These data suggest that DNMT3A does not have a large role in the function of mature skeletal muscle although a role in muscle development and differentiation is likely.


DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , Energy Metabolism/genetics , Muscle Development/genetics , Animals , Cell Differentiation/genetics , DNA Methyltransferase 3A , Exercise Tolerance/genetics , Humans , Mice , Mice, Knockout , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Physical Conditioning, Animal
7.
J Appl Physiol (1985) ; 130(3): 605-616, 2021 03 01.
Article En | MEDLINE | ID: mdl-33332990

Parental health influences embryonic development and susceptibility to disease in the offspring. We investigated whether maternal voluntary running during gestation could protect the offspring from the adverse effects of maternal or paternal high-fat diet (HF) in mice. We performed transcriptomic and whole-genome DNA methylation analyses in female offspring skeletal muscle and targeted DNA methylation analysis of the peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α) promoter in both male and female adult offspring. Maternal HF resulted in impaired metabolic homeostasis in male offspring at 9 mo of age, whereas both male and female offspring were negatively impacted by paternal HF. Maternal exercise during gestation completely mitigated these metabolic impairments. Female adult offspring from obese male or female parent had skeletal muscle transcriptional profiles enriched in genes regulating inflammation and immune responses, whereas maternal exercise resulted in a transcriptional profile similar to offspring from normal chow (NC)-fed parents. Maternal HF, but not paternal HF, resulted in hypermethylation of the Pgc-1α promoter at CpG-260, which was abolished by maternal exercise. These findings demonstrate the negative consequences of maternal and paternal HF for the offspring's metabolic outcomes later in life possibly through different epigenetic mechanisms, and maternal exercise during gestation mitigates the negative consequences.NEW & NOTEWORTHY Maternal or paternal obesity causes metabolic impairment in adult offspring in mice. Maternal exercise during gestation can completely mitigate metabolic impairment. Maternal obesity, but not paternal obesity, results in hypermethylation of the Pgc-1α promoter at CpG-260, which can be abolished by maternal exercise.


Physical Conditioning, Animal , Prenatal Exposure Delayed Effects , Adult Children , Animals , Diet, High-Fat , Female , Humans , Male , Mice , Obesity , Parents , Pregnancy
8.
J Physiol ; 598(24): 5739-5752, 2020 12.
Article En | MEDLINE | ID: mdl-32939754

KEY POINTS: Exercising at different times of day elicits different effects on exercise performance and metabolic health. However, the specific signals driving the observed time-of-day specific effects of exercise have not been fully identified. Exercise influences the skeletal muscle circadian clock, although the relative contribution of muscle contraction and extracellular signals is unknown. Here, we show that contraction acutely increases the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifts Per2 rhythmicity in muscle cells. This contraction effect on core clock genes is mediated through a calcium-dependant mechanism; The results obtained in the present study suggest that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by muscle contraction. Contraction interventions may be used to mimic some time-of-day specific effects of exercise on metabolism and muscle performance. ABSTRACT: Exercise entrains the central and peripheral circadian clocks, although the mechanism by which exercise modulates expression of skeletal muscle clock genes is unclear. The present study aimed to determine whether skeletal muscle contraction alone could directly influence circadian rhythmicity and uncover the underlying mechanism by which contraction modulates clock gene expression. We investigated the expression of core clock genes in human skeletal muscle after acute exercise, as well as following in vitro contraction in mouse soleus muscle and cultured C2C12 skeletal muscle myotubes. Additionally, we interrogated the molecular pathways by which skeletal muscle contraction could influence clock gene expression. Contraction acutely increased the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifted Per2 rhythmicity in C2C12 myotubes in vitro. Further investigation revealed that pharmacologically increasing cytosolic calcium concentrations by ionomycin treatment mimicked the effect of contraction on Per2 expression. Similarly, treatment with a calcium channel blocker, nifedipine, blocked the effect of electric pulse stimulation-induced contraction on Per2 expression. Increased calcium influx from contraction lead to binding of the phosphorylated form of cAMP response element-binding protein (CREB) to the Per2 promoter, suggesting a role of CREB in contraction-induced Per2 transcription. Thus, by dissociating the effect of muscle contraction alone from the whole effect of exercise, our investigations indicate that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by contraction.


Calcium , Circadian Clocks , Animals , Circadian Clocks/genetics , Circadian Rhythm , Gene Expression , Mice , Muscle, Skeletal/metabolism , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism
9.
Nat Metab ; 2(5): 413-431, 2020 05.
Article En | MEDLINE | ID: mdl-32478287

Non-alcoholic fatty liver disease and steatohepatitis are highly associated with obesity and type 2 diabetes mellitus. Cotadutide, a GLP-1R/GcgR agonist, was shown to reduce blood glycemia, body weight and hepatic steatosis in patients with T2DM. Here, we demonstrate that the effects of Cotadutide to reduce body weight, food intake and improve glucose control are predominantly mediated through the GLP-1 signaling, while, its action on the liver to reduce lipid content, drive glycogen flux and improve mitochondrial turnover and function are directly mediated through Gcg signaling. This was confirmed by the identification of phosphorylation sites on key lipogenic and glucose metabolism enzymes in liver of mice treated with Cotadutide. Complementary metabolomic and transcriptomic analyses implicated lipogenic, fibrotic and inflammatory pathways, which are consistent with a unique therapeutic contribution of GcgR agonism by Cotadutide in vivo. Significantly, Cotadutide also alleviated fibrosis to a greater extent than Liraglutide or Obeticholic acid (OCA), despite adjusting dose to achieve similar weight loss in 2 preclinical mouse models of NASH. Thus Cotadutide, via direct hepatic (GcgR) and extra-hepatic (GLP-1R) effects, exerts multi-factorial improvement in liver function and is a promising therapeutic option for the treatment of steatohepatitis.


Glucagon-Like Peptide-1 Receptor/agonists , Lipogenesis/drug effects , Liver Cirrhosis/drug therapy , Mitochondria/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Peptides/therapeutic use , Animals , Blood Glucose/metabolism , Body Weight , Diabetes Mellitus, Type 2/complications , Glucagon-Like Peptide-1 Receptor/genetics , Glycogen/metabolism , Liver/drug effects , Liver/enzymology , Liver/metabolism , Liver Cirrhosis/metabolism , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Proteomics
10.
Epigenomics ; 12(8): 701-713, 2020 04.
Article En | MEDLINE | ID: mdl-32157909

Aim: Innate circadian rhythms are critical for optimal tissue-specific functions, including skeletal muscle, a major insulin-sensitive tissue responsible for glucose homeostasis. We determined whether transcriptional oscillations are associated with CpG methylation changes in skeletal muscle. Materials & methods: We performed rhythmicity analysis on the transcriptome and CpG methylome of circadian synchronized myotubes. Results: We identified several transcripts and CpG-sites displaying oscillatory behavior, which were enriched with Gene Ontology terms related to metabolism and development. Oscillating CpG methylation was associated with rhythmic expression of 31 transcripts. Conclusion: Although circadian oscillations may be regulated by rhythmic DNA methylation, strong rhythmic associations between transcriptome and CpG methylation were not identified. This resource constitutes a transcriptomic/epigenomic atlas of skeletal muscle and regulation of circadian rhythms.


Circadian Rhythm/physiology , Energy Metabolism , Epigenomics , Gene Expression Profiling , Muscle Fibers, Skeletal/metabolism , Algorithms , Animals , Biomarkers , Cell Line , Circadian Clocks/genetics , Computational Biology/methods , DNA Methylation , Epigenomics/methods , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Mice , Organ Specificity/genetics , Promoter Regions, Genetic , Transcriptome
11.
Cell Metab ; 30(1): 92-110.e4, 2019 07 02.
Article En | MEDLINE | ID: mdl-31006592

While the timing of food intake is important, it is unclear whether the effects of exercise on energy metabolism are restricted to unique time windows. As circadian regulation is key to controlling metabolism, understanding the impact of exercise performed at different times of the day is relevant for physiology and homeostasis. Using high-throughput transcriptomic and metabolomic approaches, we identify distinct responses of metabolic oscillations that characterize exercise in either the early rest phase or the early active phase in mice. Notably, glycolytic activation is specific to exercise at the active phase. At the molecular level, HIF1α, a central regulator of glycolysis during hypoxia, is selectively activated in a time-dependent manner upon exercise, resulting in carbohydrate exhaustion, usage of alternative energy sources, and adaptation of systemic energy expenditure. Our findings demonstrate that the time of day is a critical factor to amplify the beneficial impact of exercise on both metabolic pathways within skeletal muscle and systemic energy homeostasis.


Circadian Rhythm/physiology , Energy Metabolism/physiology , Muscle, Skeletal/metabolism , Animals , Blotting, Western , Calorimetry, Indirect , Glycolysis/genetics , Glycolysis/physiology , Homeostasis/genetics , Homeostasis/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipid Peroxidation/genetics , Lipid Peroxidation/physiology , Male , Mass Spectrometry , Mice , Physical Conditioning, Animal , Sequence Analysis, RNA , Software , Transcriptome/genetics
12.
Cell Cycle ; 18(1): 1-6, 2019 01.
Article En | MEDLINE | ID: mdl-30558471

Maintenance of mitochondrial quality is essential for skeletal muscle function and overall health. Exercise training elicits profound adaptations to mitochondria to improve mitochondrial quality in skeletal muscle. We have recently demonstrated that acute exercise promotes removal of damaged/dysfunctional mitochondria via mitophagy in skeletal muscle during recovery through the Ampk-Ulk1 signaling cascade. In this Extra View, we explore whether Pink1 is stabilized on mitochondria following exercise as the signal for mitophagy. We observed no discernable presence of Pink1 in isolated mitochondria from skeletal muscle at any time point following acute exercise, in contrast to clear evidence of stabilization of Pink1 on mitochondria in HeLa cells following treatment with the uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Taken together, we conclude that Pink1 is not involved in exercise-induced mitophagy in skeletal muscle.


Exercise/physiology , Mitophagy/genetics , Muscle, Skeletal/metabolism , Protein Kinases/genetics , AMP-Activated Protein Kinase Kinases , Animals , Autophagy-Related Protein-1 Homolog/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , HeLa Cells , Humans , Mice , Mitochondria/genetics , Mitochondria/physiology , Muscle, Skeletal/drug effects , Physical Conditioning, Animal , Signal Transduction/drug effects , Signal Transduction/genetics
13.
Nat Commun ; 8(1): 548, 2017 09 15.
Article En | MEDLINE | ID: mdl-28916822

Mitochondrial health is critical for skeletal muscle function and is improved by exercise training through both mitochondrial biogenesis and removal of damaged/dysfunctional mitochondria via mitophagy. The mechanisms underlying exercise-induced mitophagy have not been fully elucidated. Here, we show that acute treadmill running in mice causes mitochondrial oxidative stress at 3-12 h and mitophagy at 6 h post-exercise in skeletal muscle. These changes were monitored using a novel fluorescent reporter gene, pMitoTimer, that allows assessment of mitochondrial oxidative stress and mitophagy in vivo, and were preceded by increased phosphorylation of AMP activated protein kinase (Ampk) at tyrosine 172 and of unc-51 like autophagy activating kinase 1 (Ulk1) at serine 555. Using mice expressing dominant negative and constitutively active Ampk in skeletal muscle, we demonstrate that Ulk1 activation is dependent on Ampk. Furthermore, exercise-induced metabolic adaptation requires Ulk1. These findings provide direct evidence of exercise-induced mitophagy and demonstrate the importance of Ampk-Ulk1 signaling in skeletal muscle.Exercise is associated with biogenesis and removal of dysfunctional mitochondria. Here the authors use a mitochondrial reporter gene to demonstrate the occurrence of mitophagy following exercise in mice, and show this is dependent on AMPK and ULK1 signaling.


AMP-Activated Protein Kinases/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Exercise , Lysosomes/enzymology , Mitochondria/enzymology , Mitophagy , AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/genetics , Amino Acid Motifs , Animals , Autophagy-Related Protein-1 Homolog/chemistry , Autophagy-Related Protein-1 Homolog/genetics , Humans , Lysosomes/genetics , Male , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Oxidative Stress , Phosphorylation
14.
Sci Rep ; 7(1): 7894, 2017 08 11.
Article En | MEDLINE | ID: mdl-28801668

Autophagy is stimulated by exercise in several tissues; yet the role of skeletal and cardiac muscle-specific autophagy on the benefits of exercise training remains incompletely understood. Here, we determined the metabolic impact of exercise training in obese mice with cardiac and skeletal muscle disruption of the Autophagy related 7 gene (Atg7h&mKO). Muscle autophagy deficiency did not affect glucose clearance and exercise capacity in lean adult mice. High-fat diet in sedentary mice led to endoplasmic reticulum stress and aberrant mitochondrial protein expression in autophagy-deficient skeletal and cardiac muscles. Endurance exercise training partially reversed these abnormalities in skeletal muscle, but aggravated those in the heart also causing cardiac fibrosis, foetal gene reprogramming, and impaired mitochondrial biogenesis. Interestingly, exercise-trained Atg7h&mKO mice were better protected against obesity and insulin resistance with increased circulating fibroblast growth factor 21 (FGF21), elevated Fgf21 mRNA and protein solely in the heart, and upregulation of FGF21-target genes involved in thermogenesis and fatty acid oxidation in brown fat. These results indicate that autophagy is essential for the protective effects of exercise in the heart. However, the atypical remodelling elicited by exercise in the autophagy deficient cardiac muscle enhances whole-body metabolism, at least partially, via a heart-brown fat cross-talk involving FGF21.


Autophagy-Related Protein 7/deficiency , Autophagy , Energy Metabolism , Muscle, Skeletal/pathology , Myocardium/pathology , Physical Conditioning, Animal , Ventricular Remodeling , Animals , Diet, High-Fat , Endoplasmic Reticulum Stress , Glucose/metabolism , Insulin Resistance , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Obesity , Organelle Biogenesis
15.
Am J Physiol Cell Physiol ; 312(6): C724-C732, 2017 Jun 01.
Article En | MEDLINE | ID: mdl-28356270

Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7 Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration.


Autophagy-Related Protein-1 Homolog/genetics , Mitochondria/metabolism , Mitophagy/physiology , Muscle, Skeletal/metabolism , Regeneration/physiology , Reperfusion Injury/metabolism , Animals , Autophagy/drug effects , Autophagy/physiology , Autophagy-Related Protein-1 Homolog/deficiency , Beclin-1/genetics , Beclin-1/metabolism , Cell Differentiation/drug effects , Cell Line , Cobra Cardiotoxin Proteins/toxicity , Gene Expression Regulation , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Mitophagy/drug effects , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Regeneration/drug effects , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Signal Transduction
16.
PLoS One ; 11(12): e0167910, 2016.
Article En | MEDLINE | ID: mdl-28005946

The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.


Calcium/metabolism , Cyclophilins/physiology , Homeostasis/physiology , Mitochondria, Heart/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Animals , Peptidyl-Prolyl Isomerase F , Mice , Mice, Knockout , Mitochondrial Permeability Transition Pore
17.
Stem Cells Int ; 2016: 5725927, 2016.
Article En | MEDLINE | ID: mdl-26880971

An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later life. DNA methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic modification that reduces gene expression when located within a promoter or enhancer region. Recent advances in the field suggest that epigenetic regulation is essential for skeletal muscle stem cell identity and subsequent cell development. This review summarizes what is currently known about how skeletal muscle stem cells regulate the myogenic program through DNA methylation, discusses a novel role for metabolism in this process, and addresses DNA methylation dynamics in adult skeletal muscle in response to physical activity.

18.
Physiol Rep ; 4(4)2016 Feb.
Article En | MEDLINE | ID: mdl-26893473

Being born small for gestational age increases the risk of developing adult cardiovascular and metabolic diseases. This study aimed to examine if early-life exercise could increase heart mass in the adult hearts from growth restricted rats. Bilateral uterine vessel ligation to induce uteroplacental insufficiency and fetal growth restriction in the offspring (Restricted) or sham surgery (Control) was performed on day 18 of gestation in WKY rats. A separate group of sham litters had litter size reduced to five pups at birth (Reduced litter), which restricted postnatal growth. Male offspring remained sedentary or underwent treadmill running from 5 to 9 weeks (early exercise) or 20 to 24 weeks of age (later exercise). Remarkably, in Control, Restricted, and Reduced litter groups, early exercise increased (P < 0.05) absolute and relative (to body mass) heart mass in adulthood. This was despite the animals being sedentary for ~4 months after exercise. Later exercise also increased adult absolute and relative heart mass (P < 0.05). Blood pressure was not significantly altered between groups or by early or later exercise. Phosphorylation of Akt Ser(473) in adulthood was increased in the early exercise groups but not the later exercise groups. Microarray gene analysis and validation by real-time PCR did not reveal any long-term effects of early exercise on the expression of any individual genes. In summary, early exercise programs the heart for increased mass into adulthood, perhaps by an upregulation of protein synthesis based on greater phosphorylation of Akt Ser(473).


Heart/growth & development , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Animals , Disease Models, Animal , Fetal Growth Retardation , Immunoblotting , Male , Oligonucleotide Array Sequence Analysis , Organ Size/physiology , Rats , Rats, Inbred WKY , Real-Time Polymerase Chain Reaction
20.
Am J Physiol Endocrinol Metab ; 306(9): E999-1012, 2014 May 01.
Article En | MEDLINE | ID: mdl-24619880

Individuals born after intrauterine growth restriction (IUGR) are at an increased risk of developing diabetes in their adult life. IUGR impairs ß-cell function and reduces ß-cell mass, thereby diminishing insulin secretion. IUGR also induces insulin resistance, with impaired insulin signaling in muscle in adult humans who were small for gestational age (SGA) and in rodent models of IUGR. There is epidemiological evidence in humans that exercise in adults can reduce the risk of metabolic disease following IUGR. However, it is not clear whether adult IUGR individuals benefit to the same extent from exercise as do normal-birth-weight individuals, as our rat studies suggest less of a benefit in those born IUGR. Importantly, however, there is some evidence from studies in rats that exercise in early life might be able to reverse or reprogram the long-term metabolic effects of IUGR. Studies are needed to address gaps in current knowledge, including determining the mechanisms involved in the reprogramming effects of early exercise in rats, whether exercise early in life or in adulthood has similar beneficial metabolic effects in larger animal models in which insulin resistance develops after IUGR. Human studies are also needed to determine whether exercise training improves insulin secretion and insulin sensitivity to the same extent in IUGR adults as in control populations. Such investigations will have implications for customizing the recommended level and timing of exercise to improve metabolic health after IUGR.


Exercise Therapy , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/therapy , Insulin-Secreting Cells/metabolism , Physical Conditioning, Animal , Adult , Animals , Blood Glucose/metabolism , Female , Humans , Pregnancy , Rats , Treatment Outcome
...